Thermochimica Acta, 92 (1985) 521-524 Elsevier Science Publishers 3.V., Amsteruam

THER MOANALYTICAL STUDIES OF THE FORMATION OF NEODYMIUM CITANATES

Sidorova N.M., Kartenko N.F., Glushkova V.B. Institute of Silicate Chemistry of the Acad. Sci. of the USSE, Leningrad, USSE

The existence of the compounds with the Nd_{20_3} : Ti0₂ratio 1:1, 1:2, 1:4,5 in the system Nd_{20_3} -Ti0₂ is well known. The compounds Nd_{20_3} . Ti0₂, Nd_{20_3} . 2Ti0₂, and Nd_{20_3} . 4,5 Ti0₂ have been investigated in detail. Their structure and properties have been described in /1,2,3,4,5/. The compound Nd_{20_3} . 3Ti0₂ with the defect perovskite structure has been synthesized /3/ by coprecipitation and exists in the temperature range 400 to 1000 C. The Nd_{2-3} 2+x 7+X phase with the pyrochlore structure has been obtained by² the reaction of the coprecipitated hydroxides. The decomposition of pyrochlore into Nd_{20_3} . 4,5Ti0 and Nd_{20_3} . 2Ti0₂ has been observed above 1000°C /2/. Other published data on properties of the compound Nd_{20_3} . 3Ti0₂ are not available.

The aim of our work is to investigate the crystallization of the products of coprecipitation with Nd_2O_3 ; TiO₂ ratio from 3 to 4,5. The investigations have been carried out by means of thermoanalytical method at the two heating rates with subsequent X-ray analysis of quenched specimens. X-ray data have been obtained on diffractometers DRON-2 and DRON-3 using Cuky- and Coky -radiation. Unit cell parameters have been determined by the least square method using reflections in the range 2θ 80-160°. Thermoanalytical studies of specimens have been carried out using the apparatus constructed at the Silicates Chemistry Institute of the Academy of Sciences of the USSR. As-prepared specimens were rinsed in water and then were heated for two hours at 300°C. Thermographs of specimens with Nd₂O₂ : TiO₂ ratio 1:3, 1:3,5, 1:4, 1:4,5 (the heating rates are 10 and 30°/min) are given in Fig.1. As seen in the figure exothermal effects were observed at 800 to 1100°C, their number and intensity being dependent on specimen compositions and heating rates. The results of X-ray analysis of specimens, quenched at different temperatures are given in Table I.

From these results it may be concluded that for the specimens of the composition Nd_20_3 . 3TiO₂ the heating rates effect not only the impurity amount but the composition of the main phase as well. At the heating rate $10^{\circ}/\text{min}$ the main phase of crystallization is pyrochlore; the increase of heating rate up to $30^{\circ}/\text{min}$ results in the formation of structure Nd_20_3 , 2TiO_2 , pyrochlore being not found. previously in /2/ the product of crystallization for the composition Nd_20_3 , 3TiO_2 was only pyrochlore. The dependence of phase composition of specimens on the heating rate indicates indirectly to the defective-mode structure of pyrochlore formed.

I Fig.1. Thermographs of specimens with compositions $A = N_{203} \cdot 4,5110_{2}$ $B = Nd_{20_{3}} \cdot 4110_{2}$; $C = Nd_{20_{3}} \cdot 3,5110_{2}$, $D = Nd_{20_{3}} \cdot 3110_{2}$ at the heating rates $10^{\circ}/\text{min}$ (I) and $30^{\circ}/\text{min}$ (II). The figures indicate the temperature of specimen guenching.

The phase with pyrochlore structure initially crystallizes in $Nd_2O_3 \cdot 3,5$ TiO₂ specimens, the impurity amount increasing with the increase of the heating rate from 2% at 10°/min to 10% at 30°/min. The temperature increase results in decomposition of pyrochlore into $Nd_2O_3 \cdot 2TiO_2$ and $Nd_2O_3 \cdot 4,5$ TiO₂. Investigations of specimens in the composition range from $Nd_2O_3 \cdot 3TiO_2$ to $Nd_2O_3 \cdot 3,7$ TiO₂ show that pyrochlor with the minimum impurity amount (less than 5%) is being formed in the $Nd_2O_3 \cdot (3,3 \div 3,5)$ TiO₂ specimens. Besides pyrochlore the impurities $Nd_2O_3 \cdot 2TiO_2$ and $Nd_2O_3 \cdot 4,5$ TiO₂ are observed in the compositions with TiO₂: $Nd_2O_3 \cdot 4,5$ TiO₂ are observed in the compositions with TiO₂: $Nd_2O_3 \cdot 3,3$ ratio, and the impurities

Studies of crystallization of $3Nd_2O_3 \cdot 10TiO_2$ and $Nd_2O_3 \cdot 3,5TiO_2$ specimens have been carried out at the heating rates $5^{\circ}/\text{min}$. In this case the thermograph shows one exothermal effect at 825° C which corresponds to the pyrochlore crystallization. The temperature increase leads to the following sequence of formation of the impurity phases: TiO_2 , $Nd_2O_3 \cdot 4,5TiO_2$, and finally, the decomposition of pyrochlore into $Nd_2O_3 \cdot 2TiO_2$ and $Nd_2O_3 \cdot 4,5TiO_2$.

Composition of specimens	Quenching tem- perature, ^o C	Parameter of the cubic phase with pyrochlore structure, A^0
Nd2 03 •3,51 T10 2	830 850 870 890 990	$10,209 \stackrel{+}{=} 0,001 \\ 10,214 \stackrel{+}{=} 0,001 \\ 10,221 \stackrel{+}{=} 0,002 \\ 10,224 \stackrel{+}{=} 0,002 \\ 10,246 \stackrel{+}{=} 0,001 \\ 10,246 \stackrel{+}{=} 0,001$
Nd203. 3,33T102	830 850 940 970	$\begin{array}{r} 10,213 \pm 0,001 \\ 10,215 \pm 0,001 \\ 10,235 \pm 0,001 \\ 10,238 \pm 0,002 \end{array}$

As seen in Table 2 the increase of the quenching temperature results in the increase of the cubic phase parameter of pyrochlore. As pointed above the increase of temperature is followed by the formation of TiO₂ and Nd₂O₃·4,5 TiO₂ phases. Thus the formation of titanium-rich phases appears to result in decreasing of vacancy concentrations in the cation sublattice, in consequence, the parameter increases.

CONCLUSIONS

As a result of investigations in question the practically impurity-free compound with the pyrochlore structure of the composition Nd_2O_3 , 3,5TiO₂ has been obtained at 830°C. The range of existence of the pyrochlore structure has been determined: $3Nd_2O_3 \cdot 10TiO_2 \div$ $Nd_2O_3 \cdot 3,5TiO_2$. As the temperature increases, the unit cell parameter of pyrochlore is also increasing from $10,209\pm0,001$ Å to $10,246\pm0,001$ Å. Above 1000°C the compound $Nd_2O_3 \cdot 3,5TiO_2$ decomposes to $Nd_2O_3 \cdot 4,5TiO_2$ and $Nd_2O_3 \cdot 2TiO_2 \cdot$ Table 1. X-ray analysis of specimens with $Nd_2O_3(3\pm4,5)TiO_2$ composition quenched at different temperatures.

	Nd 203. 3TiO2			Nd203.3,5T102
heating 30°3min	1. The amorphous	s phase	1.	Pyrochlore starts to
	2. Nd 203 2TiO2	starts to	2.	Poorly formed pyrochlore +
	3. Nd ₂ 03 2TiO ₂	+ the amor-	3.	Pyrochlore + Nd ₂ O ₃ , 4,5TiO ₂
are Bre	phous phase 4. Nd ₂ O ₂ ·2TiO ₂ ·	+Nd_0;4,5Ti0,	4.	$\frac{5}{(-10\%)^{-1}}$ Pyrochlor + Nd ₂ O ₂ · 2TiO ₂
e A		2) 2	5.	Nd203.4,5Ti02+Nd203.2Ti02
The heating rate 10°/min	1. Pyrochlore s	tarts to	1.	Pyrochlore starts to
	2. Poorly formed	d pyrochlore	2.	crystallize Poorly formed pyrochlore
	+ traces Nd (3. Pyrochlore 4)	$0_3 \cdot 2TiO_2$ Nd $_2O_3 \cdot 2TiO_2$	з.	Pyrochlore + traces of the
	4. Pyrochlore +	Nd _o O _o ·2TiO _o	4.	amorphous phase Pyrochlore + traces
	+ Nd 03.4,5T		5.	Nd ₂ O ₃ ·4,5TiO ₂ (~2%) Bypochlore +2Nd O.:4 5TiO
	·		6.	Nd_2O_3 + Nd_2O_3 + Nd_2O_3 · $2TiO_2$
				23 2 23 2
	Nd203' 4T102			Nd203.4,5Ti02
The heating rate 30°/min 5 b c 7 l	1. The amorphous	s phase	1.	The amorphous phase
	2. Pyrochlore + formed Nd ₂ O ₂	poorly • 4.5TiO	2.	Poorly formed Nd203 4,5TiO2
	3. The amount	of the	3.	The amount of the phase is
	4. Pyrochlore +	completely	4.	Nd ₂ O ₃ ·4,5TiO ₂
	formed Nd 03 5. Nd 0:4,5T10	•4,5Ti02		~ / ~ ~
	+	² Nd 2 ⁰ 3 ^{2Ti0} 2		

The digits in the table indicate the temperatures of specimen quenching. They correspond to digits in the fig.1 at heating rates $10^{\circ}/\text{min}$ (I) and $30^{\circ}/\text{min}$ (II).

REFERENCES.

1.H.Müller-Buschbaum, K.Scheuneman. J.Inorg.Nucl.Chem.<u>35</u>(1973)1091 2.Lejus A.-M., Queyroux F. C.R.<u>271C</u>(1970) 56 3.A.Sjich, D.Biljik, T.Novik J.Inorg.Chem.<u>21</u>(1976) 3220 4.F.Queyroux, M.Huber, R.Collongues C.R.<u>270C</u>(1970) 806 5.D.Kolar, S.Gaberšček et al. J.Sol.St.Chem. <u>38</u>(1981) 158